三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集电极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里 我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接 面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管 都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基 极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大, 故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流 到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电 洞复合,即InB? E=IErec。pnp三极管在正向活性区时主要的电流种类可以清楚地 在图3(a)中看出。
射极注入基极的电洞流大小是由EB接面间的正向偏压大小来控制,和二极体的情形类似,在启动电压附近,微小的偏压变化,即可造成很大的注入电流变化。更精确的说,三极管是利用VEB(或VBE)的变化来控制IC,而且提供之IB远比IC小。npn三极管的操作原理和pnp三极管是一样的,只是偏压方向,电流方 向均相反,电子和电洞的角色互易。pnp三极管是利用VEB控制由射极经基极,入射到集电极的电洞,而npn三极管则是利用VBE控制由射极经基极、入射到集电极的电子三极管在数字电路中的用途其实就是开关,利用电信号使三极管在正向活性区(或饱和区)与截止区间切换,就开关而言,对应开与关的状态,就数字电路而言则代表0与1(或1与0)两个二进位数字。若三极管一直维持偏压在正向活性区,在射极与基极间微小的电信号(可以是电压或电流)变化,会造成射极与集电极间电流相对上很大的变化,故可用作信号放大器。下面在介绍完三极管的电流电压特性后,会再仔细讨论三极管的用途。
品牌 | 长电 | 型号 | 13002 |
应用范围 | 放大 | 功率特性 | 小功率 |
频率特性 | 低频 | 极性 | NPN型 |
结构 | 点接触型 | 材料 | 锗(Ge) |
封装形式 | 直插型 | 封装材料 | 塑料封装 |
特征频率 | 10(MHz) | 集电极允许电流 | 1(A) |
集电极最大允许耗散功率 | 0.25(W) | 营销方式 | 现货 |
产品性质 | 热销 |